Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(2): 715-728, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38271957

RESUMO

A gelled Pickering emulsion system was fabricated by first stabilizing linseed oil droplets in water with dialdehyde cellulose nanocrystals (DACNCs) and then cross-linking with cystamine. Cross-linking of the DACNCs was shown to occur by a reaction between the amine groups on cystamine and the aldehyde groups on the CNCs, causing gelation of the nanocellulose suspension. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the cystamine-cross-linked CNCs (cysCNCs), demonstrating their presence. Transmission electron microscopy images evidenced that cross-linking between cysCNCs took place. This cross-linking was utilized in a linseed oil-in-water Pickering emulsion system, creating a novel gelled Pickering emulsion system. The rheological properties of both DACNC suspensions and nanocellulose-stabilized Pickering emulsions were monitored during the cross-linking reaction. Dynamic light scattering and confocal laser scanning microscopy (CLSM) of the Pickering emulsion before gelling imaged CNC-stabilized oil droplets along with isolated CNC rods and CNC clusters, which had not been adsorbed to the oil droplet surfaces. Atomic force microscopy imaging of the air-dried gelled Pickering emulsion also demonstrated the presence of free CNCs alongside the oil droplets and the cross-linked CNC network directly at the oil-water interface on the oil droplet surfaces. Finally, these gelled Pickering emulsions were mixed with poly(vinyl alcohol) solutions and fabricated into self-healing composite coating systems. These self-healing composite coatings were then scratched and viewed under both an optical microscope and a scanning electron microscope before and after self-healing. The linseed oil was demonstrated to leak into the scratches, healing the gap automatically and giving a practical approach for a variety of potential applications.


Assuntos
Cistamina , Nanopartículas , Emulsões/química , Óleo de Semente do Linho , Celulose/química , Nanopartículas/química , Água/química
2.
ACS Appl Mater Interfaces ; 14(10): 12722-12733, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254045

RESUMO

Linseed oil-in-water Pickering emulsions are stabilized by both sulfated CNCs (sCNCs) and octylamine-modified CNCs (oCNCs). oCNCs with hydrophobic moieties grafted on the surfaces of otherwise intact nanocrystals provided emulsions exhibiting stronger resistance to creaming of oil droplets, compared with unmodified sCNCs. sCNCs were not able to completely stabilize linseed oil in water at low CNC concentrations while oCNCs provided emulsions with no unemulsified oil residue at the same concentrations. Oil droplets in oCNC emulsions were smaller than those in samples stabilized by sCNCs, corresponding with an increased hydrophobicity of oCNCs. Cryo-SEM imaging of stabilized droplets demonstrated the formation of a CNC network at the oil-water interface, protecting the oil droplets from coalescence even after compaction under centrifugal force. These oil droplets, protected by a stabilized CNC network, were dispersed in a water-based commercial varnish, to generate a composite coating. Scratches made on these coatings self-healed as a result of the reaction of the linseed oil bled from the damaged droplets with oxygen. The leakage and drying of the linseed oil at the location of the scratches happened without intervention and was accelerated by the application of heat.

3.
Health Technol (Berl) ; 11(1): 111-117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33262925

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a long-term progressive inflammatory lung disease causing chronic breathlessness and many hospital admissions. It affects up to 1.2 million people in the UK. To help people with COPD self-manage their condition we developed, in partnership with healthcare users, a digital mobile phone app called COPD.Pal®. We report the first user feedback of COPD.Pal®, applying the Technology Acceptance Model (TAM) theoretical framework. 11 participants engaged with a click dummy version of COPD.Pal® before being asked questions relating to their experiences. A deductive, semantic, reflexive thematic analysis was conducted to analyse their individual and collective experiences. The study was registered at Clinical Trials.gov (NCT04142957). Two overarching themes resulted: Ease of Use and Perceived Usefulness. Within the former, participants discussed how they wanted flexibility and choice in how they engaged with the app; including how often they used it. Additionally, they discussed how the app layout should make it straightforward to use, whilst unanimously agreeing that COPD.Pal® provided this. Within Perceived Usefulness, participants discussed how they wanted the information they entered into the app to be useful, in addition to the app providing resources regarding COPD. Lastly, there was disagreement regarding preferences for further app development. We found that COPD.Pal® was usable and acceptable by people with COPD and TAM provided a useful theoretical framework for both structuring discussions with users and analysing their comments.

4.
Sci Rep ; 7(1): 9197, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835614

RESUMO

The principle of control signal amplification is found in all actuation systems, from engineered devices through to the operation of biological muscles. However, current engineering approaches require the use of hard and bulky external switches or valves, incompatible with both the properties of emerging soft artificial muscle technology and those of the bioinspired robotic systems they enable. To address this deficiency a biomimetic molecular-level approach is developed that employs light, with its excellent spatial and temporal control properties, to actuate soft, pH-responsive hydrogel artificial muscles. Although this actuation is triggered by light, it is largely powered by the resulting excitation and runaway chemical reaction of a light-sensitive acid autocatalytic solution in which the actuator is immersed. This process produces actuation strains of up to 45% and a three-fold chemical amplification of the controlling light-trigger, realising a new strategy for the creation of highly functional soft actuating systems.

5.
Philos Trans A Math Phys Eng Sci ; 374(2061)2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26755765

RESUMO

Mechanically and thermally robust microcapsules containing diglycidyl ether bisphenol A-based epoxy resin and a high-boiling-point organic solvent were synthesized in high yield using in situ polymerization of urea and formaldehyde in an oil-in-water emulsion. Microcapsules were characterized in terms of their size and size distribution, shell surface morphology and thermal resistance to the curing cycles of commercially used epoxy polymers. The size distribution of the capsules and characteristics such as shell thickness can be controlled by the specific parameters of microencapsulation, including concentrations of reagents, stirrer speed and sonication. Selected microcapsules, and separated core and shell materials, were analysed using thermogravimetric analysis and differential scanning calorimetry. It is demonstrated that capsules lose minimal 2.5 wt% at temperatures no higher than 120°C. These microcapsules can be applied to self-healing carbon fibre composite structural materials, with preliminary results showing promising performance.

6.
J R Soc Interface ; 9(69): 665-76, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21880614

RESUMO

Biological materials possess unique and desirable energy-absorbing mechanisms and structural characteristics worthy of consideration by engineers. For example, high levels of energy dissipation at low strain rates via triggering of crack delocalization combined with interfacial hardening by platelet interlocking are observed in brittle materials such as nacre, the iridescent material in seashells. Such behaviours find no analogy in current engineering materials. The potential to mimic such toughening mechanisms on different length scales now exists, but the question concerning their suitability under dynamic loading conditions and whether these mechanisms retain their energy-absorbing potential is unclear. This paper investigates the kinematic behaviour of an 'engineered' nacre-like structure within a high strain-rate environment. A finite-element (FE) model was developed which incorporates the pertinent biological design features. A parametric study was carried out focusing on (i) the use of an overlapping discontinuous tile arrangement for crack delocalization and (ii) application of tile waviness (interfacial hardening) for improved post-damage behaviour. With respect to the material properties, the model allows the permutation and combination of a variety of different material datasets. The advantage of such a discontinuous material shows notable improvements in sustaining high strain-rate deformation relative to an equivalent continuous morphology. In the case of the continuous material, the shockwaves propagating through the material lead to localized failure while complex shockwave patterns are observed in the discontinuous flat tile arrangement, arising from platelet interlocking. The influence of the matrix properties on impact performance is investigated by varying the dominant material parameters. The results indicate a deceleration of the impactor velocity, thus delaying back face nodal displacement. A final series of FE models considered the identification of an optimized configuration as a function of tile waviness and matrix properties. In the combined model, the optimized configuration was capable of stopping the ballistic threat, thus indicating the potential for bioinspired toughened synthetic systems to defeat high strain-rate threats.


Assuntos
Materiais Biocompatíveis/química , Exoesqueleto/química , Animais , Bioengenharia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Teste de Materiais , Modelos Biológicos , Nácar/química , Estresse Mecânico
7.
Int J Prosthodont ; 24(6): 589-98, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22146260

RESUMO

PURPOSE: This study investigated how ribbed design features, including palatal rugae, may be used to significantly improve the structural performance of a maxillary denture under load. MATERIALS AND METHODS: A computer-aided design model of a generic maxillary denture, incorporating various rib features, was created and imported into a finite element analysis program. The denture and ribbed features were assigned the material properties of standard denture acrylic resin, and load was applied in two different ways: the first simulating a three-point flexural bend of the posterior section and the second simulating loading of the entire palatal region. To investigate the combined use of ribbing and reinforcement, the same simulations were repeated with the ribbed features having a Young modulus two orders of magnitude greater than denture acrylic resin. For a prescribed load, total displacements of tracking nodes were compared to those of a control denture (without ribbing) to assess relative denture rigidity. RESULTS: When subjected to flexural loading, an increase in rib depth was seen to result in a reduction of both the transverse displacement of the last molar and vertical displacement at the centerline. However, ribbed features assigned the material properties of denture acrylic resin require a depth that may impose on speech and bolus propulsion before significant improvements are observed. CONCLUSION: The use of ribbed features, when made from a significantly stiffer material (eg, fiber-reinforced polymer) and designed to mimic palatal rugae, offer an acceptable method of providing significant improvements in rigidity to a maxillary denture under flexural load.


Assuntos
Resinas Acrílicas , Desenho Assistido por Computador , Planejamento de Dentadura , Prótese Total Superior , Análise do Estresse Dentário/métodos , Módulo de Elasticidade , Análise de Elementos Finitos , Palato Duro/anatomia & histologia , Maleabilidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...